

# Data Analysis: Quantitative Data

Dr. Sahar Hassan



# Why do I need an analysis plan?

- To make sure the questions & your data collection instrument will get the information you want
- To align your desired "report" with the results of analysis and interpretation
- To improve reliability consistent measures over time



### Key components of a data analysis plan

- Purpose of the evaluation
- Questions
- What you hope to learn from the question
- Analysis technique
- How data will be presented



# Getting your data ready

- Assign a unique identifier
- Organize & keep all forms (questionnaires, interviews, testimonials)
- Check for completeness & accuracy
- Remove those that are incomplete or do not make sense



# Dig deeper

- Did different groups show different results?
- Were there findings that surprised you?
- Are there things you don't understand very well – further study needed?



# Analyzing and Interpreting Quantitative Data

• Quantitative Data is

✓ Presented in a numerical format

- ✓ Collected in a standardized manner
- e.g. surveys, closed-ended interviews, tests
- ✓Analyzed using statistical techniques



# Analyzing Survey Data

Do you want to report...

- how many people answered a, b, c, d?
- ✓ the average number or score?
- A change in score between two points in time?
- $\checkmark$  how people compared?
- ✓ how many people reached a certain level?



# Types of Measurements

- Ordinal rank order, (1st,2nd,3rd,etc.)
- Nominal categorized or labeled data
- (red, green, blue, male, female)
- Ratio (Interval) indicates order as well as magnitude. An interval scale does not include
   Zero i.e. grade, income

# **Types of Variables**

- Independent Variable controlled or manipulated by the researcher; causes a change in the dependent variable (x-axis)
- Dependent Variable the variable being measured (y-axis)
- Discreet Variable has a fixed value i.e. # cars in a parking lot
- Continuous Variable can assume any value



# **Statistical Analysis**

### **Descriptive statistics**

• Used to describe and synthesize data

### Inferential statistics

 Used to make inferences about the population based on sample data



### **Frequency Distributions**

- A systematic arrangement of numeric values on a variable from lowest to highest, and a count of the number of times (and/or percentage) each value was obtained
- Frequency distributions can be described in terms of:
- ✓ Shape
- ✓ Central tendency
- ✓ Variability
- Can be presented in a table (Ns and percentages) or graphically (e.g., frequency polygons)



### Normal Distribution (normal curve)

Data can usually be characterized by a normal distribution

- Central tendency is represented by the peak of the distribution
- Dispersion is represented by the width of the distribution







### Shapes of Distributions

Symmetry

- Symmetric
- Skewed (asymmetric)

Positive skew (long tail points to the right)
 Negative skew (long tail points to the left)



### **Examples of Skewed Distribution**





### **Examples of Symmetric Distributions**





# Common descriptive statistics

- Count (frequencies)
- Percentage

**Measures of Central Tendency** 

- Mean (average)
- Mode (most frequent)
- Median (middle)
- Range



# Common descriptive statistics

### Measures of Dispersion

• Standard deviation: a measure that is used to quantify the amount of variation or <u>dispersion</u> of a set of data values

Measures of Association

Correlation

### Which calculation do I use? It depends on what you want to know..

| Do you want to know how many individuals<br>checked each answer?            | Frequency          |
|-----------------------------------------------------------------------------|--------------------|
| Do you want the proportion of people who<br>answered in a certain way?      | Percentage         |
| Do you want the average number or average score?                            | Mean               |
| Do you want the middle value in a range of values or scores?                | Median             |
| Do you want to show the range in answers or scores?                         | Range              |
| Do you want to compare one group to another?                                | Cross tab          |
| Do you want to report changes from pre to post?                             | Change score       |
| Do you want to show the degree to which a<br>response varies from the mean? | Standard deviation |



**Comparison of Measures of Central Tendency** 

- Mode: useful mainly as gross descriptor, especially of nominal measures
- Median: useful mainly as descriptor of typical value when distribution is skewed (e.g., household income)
- Mean: most stable and widely used indicator of central tendency



# **Skewness of distributions**

- Measures look at how unbalanced distributions are: how far from the ideal of the normal curve they are
- When the median and the mean are different, the distribution is skewed.
- The greater the difference, the greater the skew.



### **Different Shapes of Distributions**



Source: http://faculty.vassar.edu/lowry/f0204.gif



# **Kurtosis**

 Measures of kurtosis look at how sharply the distribution rises to a peak and then drops away







# Variability

 The degree to which scores in a distribution are spread out or dispersed (how spread out the data is)

Homogeneity: little variability
 Heterogeneity: great variability



### **Two Distributions of Different Variability**

School A

School B





### Indexes of Variability

• Range: highest value minus lowest value

• Standard deviation (SD): average deviation of scores in a distribution from the mean



### **Bivariate Descriptive Statistics**



# **Bivariate Descriptive Statistics**

- Used for describing the relationship between two variables
- Two common approaches:
- ✓ Crosstabs (contingency tables)
- ✓ Correlation coefficients

# Correlation Coefficients (cont.)

- The correlation coefficient r measures the strength & direction of a linear relationship between two variables on a scatterplot
- $\checkmark$  It can range from –1.00 to +1.00



# **Correlation Coefficients**

Negative relationship (0.00 to -1.00)

 ✓ One variable increases in value as the other decreases, e.g., amount of exercise and weight.

Positive relationship (0.00 to +1.00)

✓ Both variables increase, e.g., calorie consumption and weight

# Correlation Coefficients (cont.)

- Exactly –1. A perfect downhill (negative) linear relationship
- -0.70. A strong downhill (negative) linear relationship
- -0.50. A moderate downhill (negative) relationship
- -0.30. A weak downhill (negative) linear relationship
- 0. No linear relationship
- +0.30. A weak uphill (positive) linear relationship
- +0.50. A moderate uphill (positive) relationship
- +0.70. A strong uphill (positive) linear relationship
- Exactly +1. A perfect uphill (positive) linear relationship

# Correlation Coefficients (cont.)

- ✓ The greater the absolute value of the coefficient, the stronger the relationship:
- With multiple variables, a correlation matrix can be displayed to show all pairs of correlations.



# **Inferential Statistics**



# **Inferential Statistics**

- A means of drawing conclusions about a population given data from a sample
- Based on laws of probability



# Statistical Inference—Two Forms

- Estimation of parameters
- Hypothesis testing (more common)



# **Inferential Statistics**

Null Hypothesis

- Statistical hypotheses usually assume no relationship between variables
- E.g. There is no association between eye color & eyesight
- If the result of your statistical test is significant, then the original hypothesis is false and you can say that the variables in your experiment are somehow related



# Hypothesis Testing

- Based on rules of negative inference: research hypotheses are supported if null hypotheses can be rejected
- Involves statistical decision making to either:
  - Accept the null hypothesis, or
  - Reject the null hypothesis



# **One-Tailed and Two-Tailed Tests**

### **Two-tailed tests**

Hypothesis testing in which both ends of the sampling distribution are used to define the region of improbable values

### **One-tailed tests**

Critical region of improbable values is entirely in one tail of the distribution—the tail corresponding to the direction of the hypothesis







### **Overview of Hypothesis-Testing Procedures**

- Select an appropriate test statistic
- Establish the level of significance (e.g.,  $\alpha$  = .05)
- Select a one-tailed or a two-tailed test
- Compute test statistic with actual data



# Overview of Hypothesis-Testing Procedures (cont'd)

- Obtain a tabled value for the statistical test
- Compare the test statistic to the tabled value
- Make decision to accept or reject null hypothesis



- 1) *t*-Test: Tests the difference between two means
  - *t*-Test for independent groups (between subjects)
  - *t*-Test for dependent groups (within subjects)



- 2) Analysis of Variance (ANOVA)
- Tests the difference between 3+ means
  One-way ANOVA
  - Multifactor (e.g., two-way) ANOVA
  - Repeated measures ANOVA (within subjects)



### 3) Correlation

- Pearson's r, a parametric test
- Tests that the relationship between two variables is not zero
- Used when measures are on an interval or ratio scale



### 4) Chi-Square Test

- Tests the difference in proportions in categories within a contingency table
- A nonparametric test



- Analysis of variance (ANOVA): tests difference
  btw 3+ means
- 3. Pearson's r: tests that the R.S. btw 2 variables is not zero (is data is on an interval/ratio scale)
- 4. Chi-square test: tests difference in proportions in categories within a contingency table



### END